问题
填空题
函数f(x)=x3-3ax+b(a>0)的极大值为6,极小值为2,则f(x)的单调递减区间是______.
答案
(-1,1)
令f′(x)=3x2-3a=0,得x=或-
.
f(x),f′(x)随x的变化情况如下表:
x | (-∞,-![]() | -![]() | (-![]() ![]() | ![]() | (![]() |
f′(x) | + | 0 | - | 0 | + |
f(x) | | 极大值 | ![]() | 极小值 | ![]() |
![](https://img.ixiawen.com/uploadfile/2017/0513/20170513010718555.png)
![](https://img.ixiawen.com/uploadfile/2017/0513/20170513010718719.png)
函数f(x)=x3-3ax+b(a>0)的极大值为6,极小值为2,则f(x)的单调递减区间是______.
(-1,1)
令f′(x)=3x2-3a=0,得x=或-
.
f(x),f′(x)随x的变化情况如下表:
x | (-∞,-![]() | -![]() | (-![]() ![]() | ![]() | (![]() |
f′(x) | + | 0 | - | 0 | + |
f(x) | | 极大值 | ![]() | 极小值 | ![]() |