已知点A(-1,-1)在抛物线y=(k2-1)x2-2(k-2)x+1上,点B与点A关于抛物线的对称轴对称,
(1)求k的值和点B的坐标;
(2)是否存在与此抛物线仅有一个公共点B的直线?如果存在,求出符合条件的直线的解析式;如果不存在,简要说明理由.
(1)根据题意,将x=-1,y=-1,代入抛物线的解析式,得
(k2-1)×(-1)2-2(k-2)×(-1)+1=-1
解得k1=1,k2=-3.
由于k2-1≠0,所以k=-3.
抛物线的解析式是y=8x2+10x+1,
对称轴为直线x=-
,5 8
∵点B和点A(-1,-1)关于直线x=-
对称,5 8
∴B(-
,-1).1 4
(2)存在.
理由如下:
设经过点B的直线的解析式是y=mx+n,将B点坐标代入得m-4n=4.①
又∵要使直线与抛物线只有一个公共点,
只要使方程mx+n=8x2+10x+1有两个相等的实数根,
方程mx+n=8x2+10x+1
整理得,8x2+(10-m)x+1-n=0,
得△=(10-m)2-32(1-n)=0②
将①代②,解出,m=6,n=
,1 2
则它的解析式是y=6x+
.1 2
又有过点B,平行于y轴的直线与抛物线仅有一个公共点,
即x=-
.1 4
答:直线的解析式y=6x+
或x=-1 2
.1 4