问题 解答题

一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为r的铁球,这时水面恰好与球的上面相切,将球从圆锥内取出后,求圆锥内的水深.

答案

如图.在容器内注入水,并放入一个半径为r的铁球,这时水面记为AB,

将球从圆锥内取出后,这时水面记为EF.

三角形PAB为轴截面,是正三角形,

三角形PEF也是正三角形,圆O是正三角形PAB的内切圆.

由题意可知,DO=CO=r,AO=2r=OP,AC=

3
r,

V=

4
3
πr3VPC=
1
3
π(
3
r)
2
?3r=3πr3

又设HP=h,则EH=

3
3
h

V=

1
3
π(
3
3
h)2?h=
π
9
h3

∵V+V=VPC

π
9
h3+
4
3
πr3
=3πr3

h=

315
r

即圆锥内的水深是

315
r.

单项选择题
判断题