问题 选择题

下列命题:

(1)三棱锥的四个面不可以都是钝角三角形;

(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥;

(3)有两个平面互相平行,其余各面都是梯形的几何体是棱台.

其中正确命题的个数是  (  )

A.0

B.1

C.2

D.3

答案

(1)可举特例,取以点O为端点的三条线段OA、OB、OC,使得∠AOB=∠BOC=∠COA=100°,且OA=OB=OC,这时 都是钝角三角形,只有△ABC是等边三角形,可让点C沿OC无限靠近点O,则∠ACB就可趋近于100°,所以,每个面都可以是钝角三角形,故(1)不正确;

(2)对照棱锥的定义,其余各面的三角形必须有公共的顶点,故(2)也不正确;

(3)棱台是由棱锥用平行于底面的平面所截而得,各侧棱的延长线必须交于一点,故(3)也不正确.

故选A.

单项选择题
选择题