问题
填空题
5个相同的白球和6个相同的黑球放在三个不同的盒子中,要求每个盒子中至少白球黑球各一个,则一共有______种不同的放法.
答案
第一步放白球,由于白球没有区别,故分为三组,只是数量上的区别,分组方法有3,1,1与2,2,1两种分组法,放在三个不同的盒子中,共有
+A 33 A 22
=6A 33 A 22
第二步放黑球,由于黑球没有区别,只是分组时数量上的区别,分组方法有4,1,1与3,2,1与2,2,2三种,放在三个不同的例子中的放法种数是
+A33+1=10A 33 A 22
由分步原理知,一共有6×10=60种放法
故答案为60