扬州市某服装厂A车间接到生产一批西服的紧急任务,要求必须在12天(含12天)内完成.已知每套西服的成本价为800元,该车间平时每天能生产西服20套.为了加快进度,车间采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到了提高.这样,第一天生产了22套,以后每天生产的西服都比前一天多2套.但是由于机器损耗等原因,当每天生产的西服数达到30套后,每增加1套西服,当天生产的所有西服平均每套的成本就增加20元.设该车间第x天生产的西服数为y套.
(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若这批西服的订购价格为每套1200元,设该车间每天的利润为W元,试求出W与x之间的函数关系式,并求出该车间获得最高利润的那一天的利润是多少元?
(1)∵第一天生产22=20+2×1套;
第二天生产24=20+2×2套;
第三天生产26=20+2×3;
…,
∴设该车间第x天生产的西服数为y=20+2x(1≤x≤12);
(2)当1≤x≤5时,W=×(2x+20)=800x+8000,
此时W随着x的增大而增大,
∴当x=5时,W最大值=12000;
当5<x≤12时,
W=[1200-800-20×(2x+20-30)]×(2x+20)
=-80(x-2.5)2+12500,
此时函数图象开口向下,在对称右侧,W随着x的增大而减小,又天数x为整数,
∴当x=6时,W最大值=11520元.
∵12000>11520,
∴当x=5时,W最大,且W最大值=12000元.
综上所述:该车间获得最高利润的那一天的利润是12000元.