问题
填空题
记f(1)(x)=[f(x)]′,f(2)(x)=[f(1)(x)]′,…,f(n)(x)=[f(n-1)(x)]′(n∈N+,n≥2).若f(x)=xcosx,则f(0)+f(1)(0)+f(2)+L+f(2013)(0)的值为______.
答案
由f(x)=xcosx,得f(1)(x)=cosx-xsinx,f(2)(x)=-sinx-sinx-xcosx=-2sinx-xcosx,
f(3)(x)=-2cosx-cosx+xsinx=-3cosx+xsinx,f(4)(x)=3sinx+sinx+xcosx=4sinx+xcosx,f(5)(x)=4cosx+cosx-xsinx=5cosx-xsinx,…,
则f(0)+f(1)(0)+f(2)+…+f(2013)(0)=0+1+0-3+0+5+0-…+2013=(1-3)+(5-7)+…++2013=-2×503+2013=1007,
故答案为:1007.