问题
填空题
记函数f(x)的导数为f(1)(x),f(1)(x)的导数为f(2)(x),…,f(n-1)(x)的导数为f(n)(x)(n∈N*).若f(x)可进行n次求导,则f(x)均可近似表示为:
若取n=4,根据这个结论,则可近似估计自然对数的底数e≈______(用分数表示)(注:n!=n×(n-1)×…×2×1) |
答案
构造函数f(x)=ex,根据导数运算,可知f(n)(x)=ex,f(n)(0)=1
所以若取n=4,ex≈f(0)+x+
+x 2
+x 6
,x 24
令x=1,则e≈1+1+
+1 2
+1 6
=1 24 65 24
故答案为:65 24