问题 解答题
设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数 f(x)=(an-an+1+an+2)x+an+1cosx-an+2sinx满足f′(
π
2
)=0
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=2(an+
1
2an
)求数列{bn}的前n项和Sn
答案

(I)∵f(x)=an-an+1+an+2-an+1sinx-an+2cosx,f(

π
2
)=0.

∴2an+1=an+an+2对任意n∈N*,都成立.

∴数列{an}是等差数列,设公差为d,∵a1=2,a2+a4=8,∴2+d+2+3d=8,解得d=1.

∴an=a1+(n-1)d=2+n-1=n+1.

(II)由(I)可得,bn=2(n+1+

1
2n+1
)=2(n+1)+
1
2n

∴Sn=2[2+3+…+(n+1)]+

1
2
+
1
22
+…+
1
2n

=

n(2+n+1)
2
+
1
2
[1-(
1
2
)n]
1-
1
2

=n2+3n+1-

1
2n

单项选择题 A1型题
问答题 简答题