问题
解答题
设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数 f(x)=(an-an+1+an+2)x+an+1cosx-an+2sinx满足f′(
(Ⅰ)求数列{an}的通项公式; (Ⅱ)若bn=2(an+
|
答案
(I)∵f′(x)=an-an+1+an+2-an+1sinx-an+2cosx,f′(
)=0.π 2
∴2an+1=an+an+2对任意n∈N*,都成立.
∴数列{an}是等差数列,设公差为d,∵a1=2,a2+a4=8,∴2+d+2+3d=8,解得d=1.
∴an=a1+(n-1)d=2+n-1=n+1.
(II)由(I)可得,bn=2(n+1+
)=2(n+1)+1 2n+1
,1 2n
∴Sn=2[2+3+…+(n+1)]+
+1 2
+…+1 22 1 2n
=2×
+n(2+n+1) 2
[1-(1 2
)n]1 2 1- 1 2
=n2+3n+1-
.1 2n