问题
解答题
已知函数f(x)=ex-ax-1(a>0,e为自然对数的底数). (1)求函数f(x)的最小值; (2)若f(x)≥0对任意的x∈R恒成立,求实数a的值; (3)在(2)的条件下,证明:(
|
答案
(1)由题意a>0,f′(x)=ex-a,
由f′(x)=ex-a=0得x=lna.
当x∈(-∞,lna)时,f′(x)<0;当x∈(lna,+∞)时,f′(x)>0.
∴f(x)在(-∞,lna)单调递减,在(lna,+∞)单调递增.
即f(x)在x=lna处取得极小值,且为最小值,其最小值为f(lna)=elna-alna-1=a-alna-1.(5分)
(2)f(x)≥0对任意的x∈R恒成立,即在x∈R上,f(x)min≥0.
由(1),设g(a)=a-alna-1,所以g(a)≥0.
由g′(a)=1-lna-1=-lna=0得a=1.
∴g(a)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,
∴g(a)在a=1处取得最大值,而g(1)=0.
因此g(a)≥0的解为a=1,∴a=1.(9分)
(3)证明:由(2)知,对任意实数x均有ex-x-1≥0,即1+x≤ex.
令x=-
(n∈N*,k=0,1,2,3,…,n-1),则0<1-k n
≤e-k n
.k n
∴(1-
)n≤(e-k n
)n=e-k.k n
∴(
)n+(1 n
)n+…+(2 n
)n+(n-1 n
)n≤e-(n-1)+e-(n-2)+…+e-2+e-1+1n n
=
<1-e-n 1-e-1
=1 1-e-1
.(14分)e e-1