问题
解答题
已知a为实数,函数f(x)=ex(x2-ax+a).
(Ⅰ)求f′(0)的值;
(Ⅱ)若a>2,求函数f(x)的单调区间.
答案
(Ⅰ)f'(x)=ex(x2-ax+a)+ex(2x-a),
可得f'(x)=ex[x2-(a-2)x].
所以f'(0)=0.
(Ⅱ)当a>2时,令f'(x)>0,可得x<0或x>a-2.
令f'(x)<0,可得0<x<a-2.
可知函数f(x)的单调增区间为(-∞,0),(a-2,+∞),单调减区间为(0,a-2).