问题 解答题

已知抛物线y=x2-2x+m与x轴交于点A(x1,0)、B(x2,0)(x2>x1),

(1)若点P(-1,2)在抛物线y=x2-2x+m上,求m的值;

(2)若抛物线y=ax2+bx+m与抛物线y=x2-2x+m关于y轴对称,点Q1(-2,q1)、Q2(-3,q2)都在抛物线y=ax2+bx+m上,则q1、q2的大小关系是______;

(请将结论写在横线上,不要写解答过程);(友情提示:结论要填在答题卡相应的位置上)

(3)设抛物线y=x2-2x+m的顶点为M,若△AMB是直角三角形,求m的值.

答案

(1)∵点P(-1,2)在抛物线y=x2-2x+m上,(1分)

∴2=(-1)2-2×(-1)+m,(2分)

∴m=-1.(3分)

(2)q1<q2(7分)

(3)∵y=x2-2x+m

=(x-1)2+m-1

∴M(1,m-1).(8分)

∵抛物线y=x2-2x+m开口向上,

且与x轴交于点A(x1,0)、B(x2,0)(x1<x2),

∴m-1<0,

∵△AMB是直角三角形,又AM=MB,

∴∠AMB=90°△AMB是等腰直角三角形,(9分)

过M作MN⊥x轴,垂足为N.

则N(1,0),

又NM=NA.

∴1-x1=1-m,

∴x1=m,(10分)

∴A(m,0),

∴m2-2m+m=0,

∴m=0或m=1(不合题意,舍去).(12分)

单项选择题
填空题