问题 解答题
计算下列各题
(Ⅰ)已知函数f(x)=
ln(2x+1)
x
,求f′(2);
(Ⅱ)求
 
π
2
π
2
(xcosx-6sinx+e
x
2
)dx

(Ⅲ)已知
.
z
为z的共轭复数,且(1+2i)
.
z
=4+3i
,求
z
.
z
答案

(Ⅰ)由f(x)=

ln(2x+1)
x
,所以f(x)=
2
2x2+x
-
ln(2x+1)
x2

f(2)=

2
22+2
-
ln(2×2+1)
22
=
1
5
-
ln5
4

(Ⅱ)

π
2
-
π
2
(xcosx-6sinx+e
x
2
)dx

=

π
2
-
π
2
(xcosx-6sinx)dx
+∫
π
2
-
π
2
e
x
2
dx

=0+2

e
x
2
|
π
2
-
π
2

=2e

π
4
-2e-
π
4

(Ⅲ)由(1+2i)

.
z
=4+3i,

得:

.
z
=
4+3i
1+2i
=
(4+3i)(1-2i)
(1+2i)(1-2i)
=
10-5i
5
=2-i

所以z=2+i.

 则

z
.
z
=
2+i
2-i
=
(2+i)2
(2-i)(2+i)
=
3+4i
5
=
3
5
+
4
5
i.

填空题
单项选择题 A1/A2型题