问题
解答题
计算下列各题 (Ⅰ)已知函数f(x)=
(Ⅱ)求
(Ⅲ)已知
|
答案
(Ⅰ)由f(x)=
,所以f′(x)=ln(2x+1) x
-2 2x2+x
,ln(2x+1) x2
则f′(2)=
-2 2×22+2
=ln(2×2+1) 22
-1 5
.ln5 4
(Ⅱ)
(xcosx-6sinx+e∫
-π 2 π 2
)dxx 2
=
(xcosx-6sinx)dx∫
-π 2 π 2
e+∫
-π 2 π 2
dxx 2
=0+2e
|x 2
-π 2 π 2
=2e
-2e-π 4
.π 4
(Ⅲ)由(1+2i)
=4+3i,. z
得:
=. z
=4+3i 1+2i
=(4+3i)(1-2i) (1+2i)(1-2i)
=2-i10-5i 5
所以z=2+i.
则
=z . z
=2+i 2-i
=(2+i)2 (2-i)(2+i)
=3+4i 5
+3 5
i.4 5