问题 选择题

已知对任意实数x,有f(-x)=f(x),g(-x)=-g(x),且x>0时,f′(x)>0,g′(x)<0,则x<0时(  )

A.f′(x)>0,g′(x)>0

B.f′(x)<0,g′(x)<0

C.f′(x)<0,g′(x)>0

D.f′(x)>0,g′(x)<0

答案

∵x>0时,f′(x)>0,由函数的单调性与其导函数的负的关系,∴f(x)在(0,+∞0上是增函数,又对任意实数x,有f(-x)=f(x),说明f(x)是偶函数,f(x)的图象关于y轴对称,从而f(x)在(-∝,0)上是减函数,∴x<0时,f′(x)<0.同样地g(x)是奇函数,其图象关于原点对称,在(0,+∞),(-∞,0)上都是减函数,∴x<0时g′(x)<0

故选B.

单项选择题
多项选择题