问题
选择题
f(x)=x•(x-1)•(x-2)…(x-n)n∈N*则f′(0)的值为( )
|
答案
f′(x)=[x•(x-1)•(x-2)…(x-n)]′
=(x-1)•(x-2)…(x-n)+x[(x-1)•(x-2)…(x-n)]′
然后把x=0代入f′(x)得
f′(0)=(0-1)•(0-2)…(0-n)+0×[(0-1)•(0-2)…(0-n)]′
=(-1)•(-2)…(-n)=(-1)nn!
故选D