问题
填空题
设f0(x)=cosx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn'(x),n∈N*,则f2011(x)=______.
答案
∵f0(x)=cosx,
∴f1(x)=f0′(x)=-sinx,
f2(x)=f1′(x)=-cosx,
f3(x)=f2′(x)=sinx,
f4(x)=f3′(x)=cosx
…
从第五项开始,fn(x)的解析式重复出现,每4次一循环.
∴f2011(x)=f4×502+3(x)=f3(x)=sinx,
故答案为 sinx.