问题
填空题
已知f1(x)=sinx+cosx,记f2(x)=f′1(x),f3(x)=f′2(x),…,fn(x)=f′n-1(x),( n∈N*,n≥2).则f1(
|
答案
f2(x)=f1′(x)=cosx-sinx,
f3(x)=(cosx-sinx)′=-sinx-cosx,
f4(x)=-cosx+sinx,f5(x)=sinx+cosx,
以此类推,可得出fn(x)=fn+4(x)
又∵f1(x)+f2(x)+f3(x)+f4(x)=0,
∴f1(
)+f2( π 4
)++f2009( π 4
)+f2010(π 4
)=f1( π 4
)+f2(π 4
)=π 4
.2