问题
选择题
已知f(2)=-g′(2)=-2,g(2)=f′(2)=1,函数F(x)=f(x)[g(x)-2],则F′(2)=( )
A.-5
B.5
C.-3
D.3
答案
由F(x)=f(x)[g(x)-2],
所以F′(x)=f′(x)[g(x)-2]+f(x)g′(x).
又f(2)=-g′(2)=-2,g(2)=f′(2)=1,
所以F′(2)=f′(2)[g(2)-2]+f(2)g′(2)=1×(1-2)+(-2)×2=-5.
故选A.