问题
选择题
若函数f(x)在R上可导,且满足f(x)>xf′(x),则( )
A.3f(1)>f(3)
B.3f(1)<f(3)
C.3f(1)=f(3)
D.f(1)=f(3)
答案
设g(x)=
,g′(x)=f(x) x xf′(x)-f(x) x2
∵f(x)>xf′(x),
∴g′(x)=
<0xf′(x)-f(x) x2
即g(x)在(0,+∞)上单调递减函数
∴
>f(1) 1
即3f(1)>f(3)f(3) 3
故选A.