问题
解答题
用数学归纳法证明不等式:
|
答案
证明:(1)当n=2时,左边=
+1 2
+1 3
=1 4
>1,∴n=2时成立(2分)13 12
(2)假设当n=k(k≥2)时成立,即
+1 k
+1 k+1
+…+1 k+2
>11 k2
那么当n=k+1时,左边=
+1 k+1
+1 k+2
+…+1 k+3 1 (k+1)2
=
+1 k
+1 k+1
+1 k+2
+…+1 k+3
+1 k2+2k
-1 (k+1)2 1 k
>1+
+1 k2+1
+…+1 k2+2
-1 (k+1)2 1 k
>1+(2k+1)•
-1 (k+1)2
>1+1 k
>1k2-k-1 k2+2k+1
∴n=k+1时也成立(7分)
根据(1)(2)可得不等式对所有的n>1都成立(8分)