问题
填空题
(不等式选讲选做题)
已知实数a,b,c,d满足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,则e的取值范围是______.
答案
由柯西不等式得 (1+1+1+1)(a2+b2+c2+d2)≥(a+b+c+d)2
即4(16-e2)≥(8-e)2
解得0≤e≤16 5
所以:a的取值范围是0≤e≤16 5
故答案为:0≤e≤
.16 5
(不等式选讲选做题)
已知实数a,b,c,d满足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,则e的取值范围是______.
由柯西不等式得 (1+1+1+1)(a2+b2+c2+d2)≥(a+b+c+d)2
即4(16-e2)≥(8-e)2
解得0≤e≤16 5
所以:a的取值范围是0≤e≤16 5
故答案为:0≤e≤
.16 5