问题
解答题
已知:x,y,z∈R,x2+y2+z2=1,则x-2y-3z的最大值为______.
答案
由已知x,y,z∈R,x2+y2+z2=1,和柯西不等式(a2+b2+c2)(e2+f2+g2)≥(ae+bf+cg)2
则构造出[12+(-2)2+(-3)2](x2+y2+z2)≥(x-2y-3z)2.
即:(x-2y-3z)2≤14
即:x-2y-3z的最大值为
.14
故答案为
.14
已知:x,y,z∈R,x2+y2+z2=1,则x-2y-3z的最大值为______.
由已知x,y,z∈R,x2+y2+z2=1,和柯西不等式(a2+b2+c2)(e2+f2+g2)≥(ae+bf+cg)2
则构造出[12+(-2)2+(-3)2](x2+y2+z2)≥(x-2y-3z)2.
即:(x-2y-3z)2≤14
即:x-2y-3z的最大值为
.14
故答案为
.14