问题 解答题

试比较nn+1与(n+1)n(n∈N*)的大小.

当n=1时,有nn+1______(n+1)n(填>、=或<);

当n=2时,有nn+1______(n+1)n(填>、=或<);

当n=3时,有nn+1______(n+1)n(填>、=或<);

当n=4时,有nn+1______(n+1)n(填>、=或<);

猜想一个一般性的结论,并加以证明.

答案

当n=1时,nn+1=1,(n+1)n=2,此时,nn+1<(n+1)n

当n=2时,nn+1=8,(n+1)n=9,此时,nn+1<(n+1)n

当n=3时,nn+1=81,(n+1)n=64,此时,nn+1>(n+1)n

当n=4时,nn+1=1024,(n+1)n=625,此时,nn+1>(n+1)n

根据上述结论,我们猜想:当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.

①当n=3时,nn+1=34=81>(n+1)n=43=64

即nn+1>(n+1)n成立.

②假设当n=k时,kk+1>(k+1)k成立,即:

kk+1
(k+1)k
>1

则当n=k+1时,

(k+1)k+2
(k+2)k+1
=(k+1)•(
k+1
k+2
)k+1
(k+1)•(
k
k+1
)k+1
=
kk+1
(k+1)k
>1

即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,

∴当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.

多项选择题
单项选择题 共用题干题