已知二次函数的图象开口向上且不过原点0,顶点坐标为(1,-2),与x轴交于点A、B,与y轴交于点C,且满足关系式OC2=OA-OB.
(1)求二次函数的解析式;
(2)求△ABC的面积.
(1)∵抛物线顶点坐标为(1,-2),
设顶点式为y=a(x-1)2-2=ax2-2ax+a-2,A(x1,0),B(x2,0),
则x1x2=,C(0,a-2),
由OC2=OA•OB,得(a-2)2=|x1x2|=||,即a3-4a2+4a=|a-2|,
当0<a<2时,有a3-4a2+5a-2=0
即(a-1)2(a-2)=0,
解得a1=1或a2=2(舍去)
由a=1得y=x2-2x-1;
当a>2时,有a3-4a2+3a+2=0
即(a-2)(a2-2a-1)=0
解得a1=2(舍去),a2=1+,a3=1-(舍去),
故a=1+,y=(1+)x2-(2+2)x+-1,
故 所求二次函数解析式为:y=x2-2x-1或y=(1+)x2-(2+2)x+-1;
(2)由S△ABC=|AB|•|OC|,有两种情况:
①当y=x2-2x-1时,
|AB|=|x1-x2|==2,
又|OC|=1,故S△ABC=×2×1=;
②当y=(1+)x2-(2+2)x+-1时,
|AB|=|x1-x2|==2,
又|OC|=-1,则
S△ABC=×2×(-1)=(-1).
故所求△ABC的面积为(-1)或.