问题 解答题

某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须进行整改.若整改后经复查仍不合格,则强行关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01):

(Ⅰ)恰好有两家煤矿必须整改的概率;

(Ⅱ)平均有多少家煤矿必须整改;

(Ⅲ)至少关闭一家煤矿的概率.

答案

(Ⅰ)每家煤矿必须整改的概率是1-0.5,

且每家煤矿是否整改是相互独立的.

所以恰好有两家煤矿必须整改的概率是

P1=

C25
×(1-0.5)2×0.53=
5
16
=0.31.

(Ⅱ)由题设,必须整改的煤矿数ξ服从二项分布B(5,0.5).

从而ξ的数学期望是Eξ=5×0.5=2.5,

即平均有2.50家煤矿必须整改.

(Ⅲ)某煤矿被关闭,

即该煤矿第一次安检不合格,

整改后经复查仍不合格,

所以该煤矿被关闭的概率是

P2=(1-0.5)×(1-0.8)=0.1,

从而该煤矿不被关闭的概率是0.9.

由题意,每家煤矿是否被关闭是相互独立的,

所以至少关闭一家煤矿的概率是

P3=1-0.95=0.41

单项选择题
单项选择题