问题
选择题
已知f(x)=
|
答案
f′(x)=x2+(a+1)x+(a+b+1)
结合椭圆及双曲线的性质可得:f′(x)=x2+(a+1)x+(a+b+1)=0有一个大于1的根,一个小于1大于0作出不等式组
则a+b+1>0 2a+b+3<0
所表示的平面区域如图所示,令Z=a-b
作直线l0:a-b=0,把直线向可行域平移到A(-2,1)时,Zmax=-3
∴a-b<-3
故选A.
已知f(x)=
|
f′(x)=x2+(a+1)x+(a+b+1)
结合椭圆及双曲线的性质可得:f′(x)=x2+(a+1)x+(a+b+1)=0有一个大于1的根,一个小于1大于0作出不等式组
则a+b+1>0 2a+b+3<0
所表示的平面区域如图所示,令Z=a-b
作直线l0:a-b=0,把直线向可行域平移到A(-2,1)时,Zmax=-3
∴a-b<-3
故选A.