问题
解答题
已知x+y+z=1,求证x2+y2+z2≥
|
答案
∵x2+y2≥2xy,x2+z2≥2xz,y2+z2≥2yz,
∴2x2+2y2+2z2≥2xy+2xz+2yz.
∴3x2+3y2+3z2≥x2+y2+z2+2xy+2xz+2yz
∴3(x2+y2+z2)≥(x+y+z)2=1∴x2+y2+z2≥
.1 3
原不等式得证.
已知x+y+z=1,求证x2+y2+z2≥
|
∵x2+y2≥2xy,x2+z2≥2xz,y2+z2≥2yz,
∴2x2+2y2+2z2≥2xy+2xz+2yz.
∴3x2+3y2+3z2≥x2+y2+z2+2xy+2xz+2yz
∴3(x2+y2+z2)≥(x+y+z)2=1∴x2+y2+z2≥
.1 3
原不等式得证.