问题
选择题
已知函数f(x)=x(x+1)(x+2)…(x+99),则函数f(x)在x=0处的导数值为( )
A.0
B.99!
C.100!
D.4950
答案
∵f(x)=x(x+1)(x+2)…(x+99)=x[(x+1)(x+2)…(x+99)],
∴f'(x)=x'[(x+1)(x+2)…(x+99)]+x[(x+1)(x+2)…(x+99)]'
=[(x+1)(x+2)…(x+99)]+x[(x+1)(x+2)…(x+99)]',
∴f'(0)=(1×2×…•×99)+0×[(x+1)(x+2)…(x+99)]'=99!.
故选:B.