设f(n)=nn+1,g(n)=(n+1)n,n∈N*.
(1)当n=1,2,3,4时,比较f(n)与g(n)的大小.
(2)根据(1)的结果猜测一个一般性结论,并加以证明.
(1)当n=1时,nn+1=1,(n+1)n=2,此时,nn+1<(n+1)n,
当n=2时,nn+1=8,(n+1)n=9,此时,nn+1<(n+1)n,
当n=3时,nn+1=81,(n+1)n=64,此时,nn+1>(n+1)n,
当n=4时,nn+1=1024,(n+1)n=625,此时,nn+1>(n+1)n,
(2)根据上述结论,我们猜想:当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.
①当n=3时,nn+1=34=81>(n+1)n=43=64
即nn+1>(n+1)n成立.
②假设当n=k时,kk+1>(k+1)k成立,即:
>1kk+1 (k+1)k
则当n=k+1时,
=(k+1)?((k+1)k+2 (k+2)k+1
)k+1>(k+1)?(k+1 k+2
)k+1=k k+1
>1kk+1 (k+1)k
即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,
∴当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.