问题
解答题
已知数列{an}的前n项和为Sn,且a1=1,Sn=n2an(n∈N*).
(1)试求出S1,S2,S3,S4,并猜想Sn的表达式;
(2)证明你的猜想,并求出an的表达式.
答案
(1)Sn=(n∈N*)(2)an=
(1)解 ∵an=Sn-Sn-1(n≥2)
∴Sn=n2(Sn-Sn-1),∴Sn=Sn-1(n≥2)
∵a1=1,∴S1=a1=1.
∴S2=,S3==,S4=,
猜想Sn=(n∈N*).
(2)证明 ①当n=1时,S1=1成立.
②假设n=k(k≥1,k∈N*)时,等式成立,即Sk=,
当n=k+1时,
Sk+1=(k+1)2·ak+1=ak+1+Sk=ak+1+,
∴ak+1=,
∴Sk+1=(k+1)2·ak+1==,
∴n=k+1时等式也成立,得证.
∴根据①、②可知,对于任意n∈N*,等式均成立.
又∵ak+1=,∴an=.