问题 解答题

已知函数f(x)=x-ln(x+a)的最小值为0,其中a>0.

(1)求a的值;

(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;

答案

(1)a="1" (2)

题目分析:(1)首先确定函数的定义域,然后求导,利用导数,确定函数的单调区间和极小值,此处,极小值就是最小值,由于最小值为0,可建立关于a的方程,解之即可.(2)通过x=1验证k≤0不满足条件,所以k>0,构造函数g(x)=f(x)-kx2,则g′(x)=-2kx=.分类讨论:k≥时,g′(x)<0在(0,+∞)上恒成立,总有g(x)≤g(0)=0,故k≥符合题意; 0<k<时,g(x)在内单调递增,x0时,g(x0)>g(0)=0,故0<k<不合题意.所以k的最小值为.

试题解析:.解:(1)f(x)的定义域为(-a,+∞).

f′(x)=1-.2分

由f′(x)=0,得x=1-a>-a.

当x变化时,f′(x),f(x)的变化情况如下表:

x(-a,1-a)1-a(1-a,+∞)
f′(x)0
f(x)极小值
因此,f(x)在x=1-a处取得最小值,

故由题意f(1-a)=1-a=0,所以a=1.  5分

(2)当k≤0时,取x=1,有f(1)=1-ln2>0,

故k≤0不合题意.                    6分

当k>0时,令g(x)=f(x)-kx2

即g(x)=x-ln(x+1)-kx2.

g′(x)=-2kx=.

令g′(x)=0,得x1=0,x2>-1.  8分

①当k≥时,≤0,g′(x)<0在(0,+∞)上恒成立,因此g(x)在[0,+∞)上单调递减,从而对任意的x∈[0,+∞),总有g(x)≤g(0)=0,即f(x)≤kx2在[0,+∞)上恒成立,故k≥符合题意. 10分

②当0<k<时,>0, 对于x∈,g′(x)>0,故g(x)在内单调递增,因此当取x0时,g(x0)>g(0)=0,即f(x0)≤kx02不成立,故0<k<不合题意.

综上,k的最小值为.    12分

问答题

南方工业公司与国华机械厂签订合同,约定由国华机械厂为南方工业公司生产10台符合一定标准的机床;并约定南方工业公司预付货款3万元,机床安装使用后,如无质量问题,再支付其余货款;同时双方签订仲裁协议,约定合同履行过程中如发生纠纷,则向某仲裁委员会申请仲裁。 南方工业公司将机床安装投入生产后,加工的产品废品率大大超过合同规定标准。经检查,产生废品的原因是机床的一个重要参数不合格。国华机械厂多次派人对机床进行修理,仍不能达到合格标准。为此给南方工业公司造成5万元的经济损失。 南方工业公司遂通知国华机械厂解除合同,要求退回机床并返还预付款,同时要求赔偿其经济损失5万元。国华机械厂拒绝了南方工业公司的要求。南方工业公司认为合同已经解除,仲裁协议也随之失效,于是向法院提起诉讼。法院受理后,将起诉状副本发送被告。开庭前,国华机械厂向法院提交了与南方工业公司的仲裁协议。法院裁定驳回起诉。 要求:根据上述情况和合同法等法律制度的有关规定,回答下列问题。 (1) 南方工业公司解除其与国华机械厂合同的做法是否合法为什么 (2) 南方工业公司要求退回机床、返还预付款并赔偿5万元经济损失是否合法为什么 (3) 南方工业公司认为合同解除,仲裁协议也随之失效的观点是否正确为什么 (4) 法院裁定驳回起诉是否合法为什么

单项选择题