问题
解答题
在数列|an|中,a1=t-1,其中t>0且t≠1,且满足关系式:an+1(an+tn-1)=an(tn+1-1),(n∈N+)
(1)猜想出数列|an|的通项公式并用数学归纳法证明之;
(2)求证:an+1>an,(n∈N+).
答案
(1)由原递推式得到an+1=
,a2=(tn+1-1)an an+tn-1
=(t2-1)a1 a1+t-1
(t2-1),a3=1 2
=(t3-1)a2 a2+t2-1 t3-1 3
猜想得到an=
…(3分)tn-1 n
下面用数学归纳法证明an=tn-1 n
10当n=1时 a1=t-1 满足条件
20假设当n=k时,ak=tk-1 k
则ak+1(
+tk-1)=tk-1 k
(tk+1-1),∴ak+1•tk-1 k
=k-1 k
,∴ak+1=tk+1-1 k tk+1-1 k+1
即当n=k+1时,原命题也成立.
由10、20知an=
…(7分)tn-1 n
(2)an+1-an=
-tn+1-1 n+1
=tn-1 n
[n(tn+1-1)-(n+1)(tn-1)]=1 n(n+1)
[ntn(t-1)-(tn-1)]=1 n(n+1)
[ntn-(tn-1+tn-2+…+t+1)]t-1 n(n+1)
而ntn-(tn-1+tn-2+…+t+1)=(tn-tn-1)+(tn-tn-2)+…+(tn-t)+(tn-1)=tn-1(t-1)+tn-2(t2-1)+tn-3(t3-1)+…+t(tn-1-1)+(tn-1)=>0,t>1 <0,0<t<1
故t>0,且t≠1时有an+1-an>0,即an+1>an…(13分)