问题 解答题
设数列{an}的前n项和Sn满足:Sn=nan-2n(n-1).等比数列{bn}的前n项和为Tn,公比为a1,且T5=T3+2b5
(1)求数列{an}的通项公式;
(2)设数列{
1
anan+1
}的前n项和为Mn,求证:
1
5
≤Mn
1
4
答案

(1)∵等比数列{bn}的前n项和为Tn,公比为a1,且T5=T3+2b5 ,∴b4+b5=2b5

∴b4=b5,∴公比 a1=

b5
b4
=1,故等比数列{bn}是常数数列.

数列{an}的前n项和Sn满足:Sn=nan-2n(n-1),当n≥2时,

an=sn-sn-1=nan-2n(n-1)-[nan-1-2(n-1)(n-2)],∴an-an-1=4 (n≥2).

∴数列{an}是以1为首项,以4为公差的等差数列,an=4n-3.

(2)∵数列{

1
anan+1
}的前n项和为Mn

1
anan+1
=
1
(4n-3)[4(n+1)-3]
=
1
(4n-3)(4n+1)
=
1
4
(
1
4n-3
-
1
4n+1
)

∴Mn =

1
4
[1-
1
5
+
1
5
-
1
9
+
1
9
-
1
13
+…+
1
4n-3
-
1
4n+1
]=
1
4
(1-
1
4n+1
)<
1
4

再由数列{ Mn }是增数列,∴Mn≥M1=

1
5

综上可得,

1
5
≤Mn
1
4

选择题
单项选择题