问题
解答题
设数列{an}的前n项和Sn满足:Sn=nan-2n(n-1).等比数列{bn}的前n项和为Tn,公比为a1,且T5=T3+2b5. (1)求数列{an}的通项公式; (2)设数列{
|
答案
(1)∵等比数列{bn}的前n项和为Tn,公比为a1,且T5=T3+2b5 ,∴b4+b5=2b5,
∴b4=b5,∴公比 a1=
=1,故等比数列{bn}是常数数列.b5 b4
数列{an}的前n项和Sn满足:Sn=nan-2n(n-1),当n≥2时,
an=sn-sn-1=nan-2n(n-1)-[nan-1-2(n-1)(n-2)],∴an-an-1=4 (n≥2).
∴数列{an}是以1为首项,以4为公差的等差数列,an=4n-3.
(2)∵数列{
}的前n项和为Mn,1 anan+1
=1 anan+1
=1 (4n-3)[4(n+1)-3]
=1 (4n-3)(4n+1)
(1 4
-1 4n-3
),1 4n+1
∴Mn =
[1-1 4
+1 5
-1 5
+1 9
-1 9
+…+1 13
-1 4n-3
]=1 4n+1
(1-1 4
)<1 4n+1
.1 4
再由数列{ Mn }是增数列,∴Mn≥M1=
.1 5
综上可得,
≤Mn<1 5
.1 4