问题 解答题

(本小题满分12分)甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.6,计算:

(1)两人都击中目标的概率;

(2)其中恰有一人击中目标的概率;

(3)至少有一人击中目标的概率.

答案

解:(1)我们把“甲射击一次击中目标”叫做事件A,“乙射击一次击中目标”叫做事件B.显然事件A、B相互独立,所以两人各射击一次都击中目标的概率是P(A·B)=P(A)·P(B)=0.6×0.6=0.36.

答:两人都击中目标的概率是0.36. …………………………………4分

(2)同理,两人各射击一次,甲击中、乙未击中的概率是P(A·)=P(A)·P(

=0.6× (1-0.6)=0.6×0.4=0.24.

甲未击中、乙击中的概率是P(·B)=P()P(B)=0.24,显然,“甲击中、乙未击中”和“甲未击中、乙击中”是不可能同时发生,即事件A··B互斥,所以恰有一人击中目标的概率是P(A·)+P(·B)=0.24+0.24=0.48.

答:其中恰有一人击中目标的概率是0.48. …………………………………8分

(3)两人各射击一次,至少有一人击中目标的概率P=P(A·B)+[P(A·)+P()·B]=0.36+0.48=0.84

答:至少有一人击中目标的概率是0.84. ………………………………12分

选择题
单项选择题