问题
解答题
设{an}是等差数列,an>0,公差d≠0,求证:
|
答案
证明:∵{an}是等差数列,∴an+k=an+kd. (2分)
要证
+an+1
<an+4
+an+2
,an+3
只要证
+an+d
<an+4d
+an+2d
,an+3d
只要证an+d+2
+an+4d<an+2d+2(an+d)(an+4d)
+an+3d,(an+2d)(an+3d)
∵an>0,∴只要证(an+d)(an+4d)<(an+2d)(an+3d)(2分)
只要证an2+5dan+4d2<an2+5dan+6d2,只要证d2>0. (2分)
∵已知d≠0,∴d2>0成立,故
+an+1
<an+4
+an+2
. (2分)an+3