问题
解答题
选修4-5:不等式选讲 (Ⅰ)已知x,y都是正实数,求证:x3+y3≥x2y+xy2; (Ⅱ)已知a,b,c都是正实数,求证:a3+b3+c3≥
|
答案
证明:(Ⅰ)∵(x3+y3)-(x2y+xy2)=x2(x-y)+y2(y-x)=(x-y)(x2-y2)=(x-y)2(x+y),
又∵x,y∈R+,∴(x-y)2≥0,,x+y>0,∴(x-y)2(x+y)≥0,
∴x3+y3≥x2y+xy2.…(5分)
(Ⅱ)∵a,b,c∈R+,由(Ⅰ)知:a3+b3≥a2b+ab2;b3+c3≥b2c+bc2;c3+a3≥c2a+ca2;
将上述三式相加得:2(a3+b3+c3)≥(a2b+ab2)+(b2c+bc2)+(c2a+ca2),3(a3+b3+c3)≥(a3+a2b+ca2)+(b3+ab2+b2c)+(c3+bc2+c2a) =a2(a+b+c)+b2(a+b+c)+c2(a+b+c) =(a+b+c)+(a2+b2+c2)
∴a3+b3+c3≥
(a2+b2+c2)(a+b+c).…(10分)1 3