问题
解答题
已知x,y,z∈R+,求证: (1)(x+y+z)3≥27xyz; (2)(
(3)(x+y+z)(x2+y2+z2)≥9xyz. |
答案
证明:(1)∵x,y,z∈R+,∴x+y+z≥3
,当且仅当x=y=z时,取等号,∴(x+y+z)3≥27xyz; 3 xyz
(2)∵x,y,z∈R+,∴
+x y
+y z
≥3z x
=3,3
•x y
•y z z x
+y x
+z y
≥3x z
=3,当且仅当x=y=z时,取等号,3
•y x
•z y x z
∴两式相乘,可得(
+x y
+y z
)(z x
+y x
+z y
)≥9;x z
(3))∵x,y,z∈R+,∴x+y+z≥3
,x2+y2+z2≥33 xyz
,当且仅当x=y=z时,取等号,3 x2y2z2
∴两式相乘可得(x+y+z)(x2+y2+z2)≥9xyz.