已知f(x)=ln(x+2)-x2+bx+c,
(1)若函数f(x)在x=1处的切线与直线3x+7y+2=0垂直,且f(-1)=0,求函数f(x)的解析式;
(2)若f(x)在区间[0,2]上单调递减,求b的取值范围.
解:(1),
由得b=4,c=5,
所以。
(2),
设恒成立,
∴g(x)=0必有两根,
∵f(x)在区间[0,2]上单调递减,
∴g(x)在[0,2]上值恒非正,
∴或
,
解得,
故当时,f(x)在[0,2]上单调递减.
已知f(x)=ln(x+2)-x2+bx+c,
(1)若函数f(x)在x=1处的切线与直线3x+7y+2=0垂直,且f(-1)=0,求函数f(x)的解析式;
(2)若f(x)在区间[0,2]上单调递减,求b的取值范围.
解:(1),
由得b=4,c=5,
所以。
(2),
设恒成立,
∴g(x)=0必有两根,
∵f(x)在区间[0,2]上单调递减,
∴g(x)在[0,2]上值恒非正,
∴或
,
解得,
故当时,f(x)在[0,2]上单调递减.