问题 解答题

已知直线l1为曲线y=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1⊥l2

(Ⅰ)求直线l2的方程;

(Ⅱ)求由直线l1、l2和x轴所围成的三角形的面积。

答案

解:(Ⅰ)y′=2x+1,

直线l1的方程为y=3x-3,

设直线l2过曲线y=x2+x-2上的点B(b,b2+b-2),

则l2的方程为y=(2b+1)x-b2-2,

因为l1⊥l2,则有2b+1=

所以直线l2的方程为

(Ⅱ)解方程组,得

所以直线l1和l2的交点的坐标为

l1、l2与x轴交点的坐标分别为(1,0)、

所以所求三角形的面积

判断题
名词解释