问题 问答题

如图所示,在水平向右的匀强电场中,有一个带电小球,用长为0.2m的绝缘细线悬挂在O点,当小球静止在C点时,细线与竖直方向夹角为60°.若小球恰能在竖直平面内做完整的圆周运动,g=10m/s2,求:

(1)小球运动过程中的最小速度;

(2)小球运动到O点正下方B点时的速度.

答案

(1)小球在C点受重力、电场力和拉力处于平衡,知电场力和重力的合力与拉力等值反向,知A点为圆周运动的等效最高点.

根据牛顿第二定律得:

mg
cos60°
=m
v12
r

解得最小速度为:v1=

gr
cos60°
=
10×0.2
1
2
m/s=2m/s.

(2)对小球从A点到B点运用动能定理得:qErsin60°+mgr(1+cos60°)=

1
2
mv22-
1
2
mv12

因为tan60°=

qE
mg
,则qE=
3
mg

代入解得:v2=4m/s.

答:(1)小球运动过程中的最小速度2m/s

(2)小球运动到O点正下方B点时的速度4m/s

填空题
多项选择题 案例分析题