问题 填空题

已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是 ______.

答案

∵f(x)=2f(2-x)-x2+8x-8,

∴f(2-x)=2f(x)-(2-x)2+8(2-x)-8.

∴f(2-x)=2f(x)-x2+4x-4+16-8x-8.

将f(2-x)代入f(x)=2f(2-x)-x2+8x-8

得f(x)=4f(x)-2x2-8x+8-x2+8x-8.

∴f(x)=x2,f'(x)=2x

∴y=f(x)在(1,f(1))处的切线斜率为y′=2.

∴函数y=f(x)在(1,f(1))处的切线方程为y-1=2(x-1),

即y=2x-1.

答案y=2x-1

判断题
问答题 计算题