问题
填空题
(1)已知函数y=-
(2)已知抛物线y=ax2+bx+c(a≠0)的开口向上,对称轴是直线x=2,当x1=0,x2=
(3)函数y=2-
(4)已知二次函数y=x2+2x+a(0≤x≤1)的最大值是3,那么a的值为______. |
答案
(1)函数y=-
x2+x+1 2
(0≤x≤3),1 2
=-
(x-1)2+1,∵0≤x≤3,1 2
当x=1时,y取最大值是1;当x=3时,y取最小值是-1;
故答案为:1,1,3,-1;
(2)抛物线y=ax2+bx+c(a≠0)的开口向上,对称轴是直线x=2,当x=2时取最小值,
∵当x<2时是减函数,∴y1>y2,又∵3-2<2-0,2-
<3-2,即y1>y3,y3>y2,3
故答案为:y1>y3>y2
(3)y=2-
=2-4x- x2
,当x=2时,取得最小值为:0;当x=0或4时取最大值2;-(x-2)2+4
(4)二次函数y=x2+2x+a(0≤x≤1),y=(x+1)2+a-1,当x=1时,取得最大值4+a-1=3,
故a=0,故答案为:0.