问题 解答题
设a∈[-2,0],已知函数f(x)=
x3-(a+5)x,x≤0
x3-
a+3
2
x2+ax,
x>0

(Ⅰ) 证明f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增;
(Ⅱ) 设曲线y=f(x)在点Pi(xi,f(xi))(i=1,2,3)处的切线相互平行,且x1x2x3≠0,证明x1+x2+x3
1
3
答案

(I)令f1(x)=x3-(a+5)x(x≤0)f2(x)=x3-

a+3
2
x2+ax(x>0).

f′1
(x)=3x2-(a+5),由于a∈[-2,0],从而当-1<x<0时,
f′1
(x)=3x2-(a+5)<3-a-5≤0

所以函数f1(x)在区间(-1,0)内单调递减,

f′2
(x)=3x2-(a+3)x+a=(3x-a)(x-1),由于a∈[-2,0],所以0<x<1时,
f′2
(x)<0

当x>1时,

f′2
(x)>0,即函数f2(x)在区间(0,1)内单调递减,在区间(1,∞)上单调递增.

综合①②及f1(0)=f2(0),可知:f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增;

(II)证明:由(I)可知:f(x)在区间(-∞,0)内单调递减,在区间(0,

a+3
6
)内单调递减,在区间(
a+3
6
,+∞)
内单调递增.

因为曲线y=f(x)在点Pi(xi,f(xi))(i=1,2,3)处的切线相互平行,从而x1,x2,x3互不相等,且f(x1)=f(x2)=f(x3)

不妨x1<0<x2<x3,由3

x21
-(a+5)=3
x22
-(a+3)x2=3
x23
-(a+3)x3+a

可得3

x22
-3
x23
-(a+3)(x2-x3)=0,解得x2+x3=
a+3
3
,从而0<x2
a+3
6
x3

设g(x)=3x2-(a+3)x+a,则g(

a+3
6
)<g(x2)<g(0)=a.

3

x21
-(a+5)=g(x2)<a,解得-
2a+5
3
x1<0

所以x1+x2+x3>-

2a+5
3
+
a+3
3

设t=

2a+5
3
,则a=
3t2-5
2

∵a∈[-2,0],∴t∈[

3
3
15
3
],

x1+x2+x3>-t+

3t2+1
6
=
1
2
(t-1)2-
1
3
≥-
1
3

x1+x2+x3>-

1
3

解答题
单项选择题