问题 填空题

定义满足不等式|x-A|<B(A∈R,B>0)的实数x的集合叫做A的B 邻域.若a+b-t(t为正常数)的a+b邻域是一个关于原点对称的区间,则a2+b2的最小值为______.

答案

因为:A的B邻域在数轴上表示以A为中心,B为半径的区域,

∴|x-(a+b-t)|<a+b⇒-t<x<2(a+b)-t,

而邻域是一个关于原点对称的区间,所以可得a+b-t=0⇒a+b=t.

又因为:a2+b2≥2ab⇒2(a2+b2)≥a2+2ab+b2=(a+b)2=t2

所以:a2+b2

t 2
2

故答案为:

t 2
2

单项选择题
词汇互译