问题 解答题
已知集合A={x|x2+3x-4<0},B={x|
x+2
x-4
<0
}.
(1)在区间(-4,5)上任取一个实数x,求“x∈A∩B”的概率;
(2)设(a,b)为有序实数对,其中a,b分别是集合A,B中任取的一个整数,求“a-b∈A∪B”的概率.
答案

(1)∵A={x|x2+3x-4<0},B={x|

x+2
x-4
<0}.

解之,得A={x|-4<x<1},B={x|-2<x<4},…(2分)

∴A∩B={x|-2<x<1},

事件“x∈A∩B”对应长度为3的线段,设它的概率为P1

所有的事件:x∈(-4,5),对应长度为9的线段.

∴事件“x∈A∩B”的概率为:P1=

3
9
=
1
3
.…(5分)

(2)因为a,b∈Z,且a∈A,b∈B,

所以,a∈{-3,-2,-1,0},b∈{-1,0,1,2,3},

基本事件共有4×5=20个结果,即20个基本事件. …(9分)

又因为A∪B=(-4,4),

设事件E为“a-b∈A∪B”,则事件E中包含14个基本事件,…(11分)

事件E的概率P(E)=

14
20
=
7
10
.…(12分)

解答题
单项选择题