问题 填空题

连续抛掷两枚正方体骰子(它们的六个面分别标有数字1,2,3,4,5,6),记所得朝上的面的点数分别为x,y,过坐标原点和点P(x-3,y-3)的直线的倾斜角为θ,则θ>60°的概率为______(规定:P与坐标原点重合时不满足θ>60°的情形).

答案

由题意知本题是一个古典概型,点P的坐标如下表:

x\y123456
1(-2,-2)(-2,-1)(-2,0)(-2,1)(-2,2)(-2,3)
2(-1,-2)(-1,-1)(-1,0)(-1,1)(-1,2)(-1,3)
3(0,-2)(0,-1)(0,0)(0,1)(0,2)(0,3)
4(1,-2)(1,-1)(1,0)(1,1)(1,2)(1,3)
5(2,-2)(2,-1)(2,0)(2,1)(2,2)(2,3)
6(3,-2)(3,-1)(3,0)(3,1)(3,2)(3,3)
由表格易知,共有36种可能情况,

过坐标原点和点P(x-3,y-3)的直线的倾斜角为θ,则θ>60°的点有(-2,1)、(-2,2)、(-2,3)、(-1,-2)、(-1,1)、(-1,2)、(-1,3)、(0,-2)、(0,-1)、(0,1)、(0,2)、(0,3)、(1,-2)、(1,-1)、(1,2)、(1,3)、(2,-2)、(2,-1)、(3,-2)、(3,-1),共有20种情形

故过坐标原点和点P(x-3,y-3)的直线的倾斜角为θ,则θ>60°的概率为

20
36
=
5
9

故答案为:

5
9

单项选择题
单项选择题