问题
解答题
已知平面区域
(1)当圆C的面积最小时,求圆C的方程; (2)若斜率为1的直线l与(1)中的圆C交于不同的两点A、B,且满足CA⊥CB,求直线l的方程. |
答案
(1)由题意知此平面区域表示的是以O(0,0),P(4,0),Q(0,2)构成的三角形及其内部,且△OPQ是直角三角形,
由于覆盖它的且面积最小的圆是其外接圆,∴圆心是Rt△OPQ的斜边PQ的中点C(2,1),半径r=|OC|=
=22+12
,5
∴圆C的方程是(x-2)2+(y-1)2=5.
(2)设直线l的方程是:y=x+b.∵CA⊥CB,∴圆心C到直线l的距离是
r=2 2
,10 2
即
=|2-1+b| 2
,解之得,b=-1±10 2
.5
∴直线l的方程是:y=x-1±
.5