问题
解答题
已知f(x)为二次函数,不等式f(x)+2<0的解集为( -1,
(Ⅰ)求函数f(x)的解析式; (Ⅱ)设bn=
(Ⅲ)若(Ⅱ)中数列bn的前n项和为Sn,求数列Sn•cos(bnπ)的前n项和Tn. |
答案
(Ⅰ)依题意,f(x)+2=a(x+1)(x-
)(a>0),1 3
即f(x)=ax2+
x-2a 3
-2a 3
令α=
,β=π,则sinα=1,cosβ=-1,有f(1)≤0,f(2-1)≥0,π 2
得f(1)=0,即a+
-2a 3
-2=0,得a=a 3
.3 2
∴f(x)=
x2+x-3 2
.-(4分)5 2
(Ⅱ)f'(x)=3x+1,则3an+1=1-
=1-1 f′(an)
=1 3an+1 3an 3an+1
即an+1=
,两边取倒数,得an 3an+1
=3+1 an+1
,即bn+1=3+bn.1 an
∴数列bn是首项为b1=
=1,公差为3的等差数列.1 a1
∴bn=1+(n-1)•3=3n-2(n∈N*).(9分)
(Ⅲ)∵cos(bnπ)=cos(3n-2)π=cos(nπ)=(-1)n
∴Sn•cos(bnπ)=(-1)n•Sn∴Tn=-S1+S2-S3+S4-+(-1)nSn.
(1)当n为偶数时Tn=(S2-S1)+(S4-S3)++(Sn-Sn-1)=b2+b4++bn
=
=
(b2+bn)n 2 2
(4+3n-2)=n 4 3n2+2n 4
(2)当n为奇数时Tn=Tn-1-Sn=
-3 (n-1)2+2 (n-1) 4
=n (1+3n-2) 2 -3n2-2n+1 4
综上,Tn=
(13分)
( n为奇数 )-3n2-2n+1 4
( n为偶数 ).3n2+2n 4