问题 解答题
已知f(x)为二次函数,不等式f(x)+2<0的解集为( -1,  
1
3
 )
,且对任意α,β∈R恒有f(sinα)≤0,f(2+cosβ)≥0.数列an满足a1=1,3an+1=1-
1
f′(an)
(n∈N×
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设bn=
1
an
,求数列bn的通项公式;
(Ⅲ)若(Ⅱ)中数列bn的前n项和为Sn,求数列Sn•cos(bnπ)的前n项和Tn
答案

(Ⅰ)依题意,f(x)+2=a(x+1)(x-

1
3
)(a>0),

f(x)=ax2+

2a
3
x-
a
3
-2

α=

π
2
,β=π,则sinα=1,cosβ=-1,有f(1)≤0,f(2-1)≥0,

得f(1)=0,即a+

2a
3
-
a
3
-2=0,得a=
3
2

f(x)=

3
2
x2+x-
5
2
.-(4分)

(Ⅱ)f'(x)=3x+1,则3an+1=1-

1
f′(an)
=1-
1
3an+1
=
3an
3an+1

an+1=

an
3an+1
,两边取倒数,得
1
an+1
=3+
1
an
,即bn+1=3+bn

∴数列bn是首项为b1=

1
a1
=1,公差为3的等差数列.

∴bn=1+(n-1)•3=3n-2(n∈N*).(9分)

(Ⅲ)∵cos(bnπ)=cos(3n-2)π=cos(nπ)=(-1)n

∴Sn•cos(bnπ)=(-1)n•Sn∴Tn=-S1+S2-S3+S4-+(-1)nSn

(1)当n为偶数时Tn=(S2-S1)+(S4-S3)++(Sn-Sn-1)=b2+b4++bn

=

n
2
(b2+bn)
2
=
n
4
(4+3n-2)=
3n2+2n
4

(2)当n为奇数时Tn=Tn-1-Sn=

(n-1)2+2 (n-1)
4
-
n (1+3n-2)
2
=
-3n2-2n+1
4

综上,Tn=

-3n2-2n+1
4
  ( n为奇数 )
3n2+2n
4
  ( n为偶数 ).
(13分)

填空题
填空题