问题
解答题
设f(x)=
(1)如果g(x)=f′(x)-2x-3在x=-2处取得最小值-5,求f(x)的解析式; (2)如果m+n<10(m,n∈N+),f(x)在单调递减区间的长度是正整数,试求m和n的值.(注:区间(a,b)的长度为b-a) |
答案
(1)由题意得g(x)=f′(x)-2x-3=x2+2mx+n-2x-3=(x+m-1)2+(n-3)-(m-1)2,
又g(x) 在x=-2处取得最小值-5,
所以
+(n-3)-(m-1)2=-5,解得m=3,n=2.m-1=2 (m-3)2
所以f(x)=
x3+3x2+2x. 1 3
(2)因为f′(x)=x2+2mx+n且f(x)的单调递减区间的长度是正整数,
所以方程f′(x)=0,即x2+2mx+n=0必有两不等实根,
则△=4m2-4n>0,即m2>n.
不妨设方程f′(x)=0的两根分别为x1、x2,则|x1-x2|=
=2(x1+x2) 2-4x1x2
且为正整数.m2-n
又因为m+n<10(m,n∈N+),所以m≥2时才能有满足条件的m、n.
当m=2时,只有n=3符合要求;
当m=3时,只有n=5符合要求;
当m≥4时,没有符合要求的n.
故只有m=2,n=3或m=3,n=5满足上述要求.