问题
计算题
已知x,y满足方程x4+y4+2x2y2﹣x2﹣y2﹣12=0,求x2+y2的值.
答案
解:∵x4+y4+2x2y2﹣x2﹣y2﹣12=0,
∴(x2+y2)2﹣(x2+y2)﹣12=0,
即(x2+y2+3)(x2+y2﹣4)=0,
∴x2+y2=﹣3,或x2+y2=4,
∵x2+y2≥0,
∴x2+y2=4.
已知x,y满足方程x4+y4+2x2y2﹣x2﹣y2﹣12=0,求x2+y2的值.
解:∵x4+y4+2x2y2﹣x2﹣y2﹣12=0,
∴(x2+y2)2﹣(x2+y2)﹣12=0,
即(x2+y2+3)(x2+y2﹣4)=0,
∴x2+y2=﹣3,或x2+y2=4,
∵x2+y2≥0,
∴x2+y2=4.